Kerentanan Air Tanah di Kawasan Pertanian Garam Pesisir Pademawu, Madura berdasarkan Karakteristik Hidrogeokimia dan Indeks Kualitas Air

Wisnu Arya Gemilang, Hendra Bakti

Abstract


Kawasan pesisir Pademawu yang beralih fungsi menjadi pusat pertanian garam menimbulkan beberapa dampak negatif yang salah satunya adalah permasalahan kerentanan sumber daya air tanah. Beberapa sumur gali milik penduduk sudah berubah menjadi payau hingga asin. Evaluasi terhadap kualitas air tanah di kawasan tersebut sangat dibutuhkan untuk mengetahui kerentanan air tanah. Penilaian kerentanan air tanah dilakukan berdasarkan parameter hidrogeokimia dan indeks kualitas air Water Quality Index (WQI). Fasies hidrokimia air tanah didominasi oleh fasies CaHCO3 kemudian NaHCO3 dan NaCl. Nilai rasio Na/Cl dan Cl/HCO3 menunjukkan bahwa dalam air tanah daerah penelitian telah terjadi proses pencampuran air laut ke dalam akuifer dengan kategori penyusupan air laut sedikit hingga agak tinggi. Diinterpretasikan kondisi tersebut didominasi oleh proses infiltrasi air tambak garam ke dalam akuifer. Nilai Water Quality Index (WQI) berkisar 46,69-736,42, kategori WQI good water mendominasi wilayah penelitian sebanyak 45,45%, excellent 27,28%, poor water 18,18% dan satu sampel air masuk kategori 9,09%. Lokasi dengan kategori poor water dan very poor water berada di sumur gali penduduk yang berdekatan dengan garis pantai dan tambak garam. Pengaturan tataguna lahan antara kawasan pemukiman dan tambak garam sangat dibutuhkan sehingga tidak memperluas area kerentanan air tanah di pesisir Pademawu.

 

Pademawu coastal area has changed  into a center for salt farmin that caused some  negative impacts to groundwater resources. Some dug wells in this area has been reported to produce brackish and salty. Groundwater vulnerability assessment based on hydrogeochemical parameters and Water Quality Index (WQI) have been conducted to identify the vulnerability index. Hydrochemical facies of groundwater is dominated by CaHCO3, NaHCO3, and NaCl. Ratios of Na / Cl and Cl / HCO3 show that the in the study area a mixture of sea water within aquifers has bene occurred and categorized as low and slightly high seawater intrusion. This may have been caused by the process of salt-pond water infiltration within aquifers. The WQI is ranged from 46.69-736.42, the category of good water WQI dominates the study area as much as 45.45%, excellent 27.28%, poor water 18.18% and one of water samples reached 9.09%. Categories of poor and very poor water are observed in the wells of residents around the coastline and salt ponds. Land-use reorganizing between residential areas and salt ponds is urgently essential to minimalize the vulnerable area of groundwater in the Pademawu coast.


Keywords


Kerentanan, air tanah, pesisir, hidrogeokimia, water quality index, Madura

References


Abu-alnaeem, M. F., Yusoff, I., Ng, T. F., Alias, Y., Raksmey, M., 2018. Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Sci. Total Environ. 615, 972–989. DOI: 10.1016/j.scitotenv.2017.09.320

Chatterjee, R., Tarafder, G., Paul, S., 2010. Groundwater quality assessment of Dhanbad district, Jharkhand, India. Bull. Eng. Geol. Environ. 69, 137–141. DOI: 10.1007/s10064-009-0234-x

Citrayati, N., Antariksa, Titisari, E. Y., 2008. Permukiman Masyarakat Petani Garam Di Desa Pinggir Papas, Kabupaten Sumenep. Arsit. E-Journal 1, 1–14.

Dwivedi, S. L., Pathak, V., 2007. A preliminary assignment of water quality index to Mandakini River, Chitrakoot. Indian J. Environ. Prot. 27, 1036–1038.

Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., 1999. Standard Methods for the Examination of Water and Wastewater, ProcAmerPubHhealth Ass.

Efendy, M., Sidik, R. F., Muhsoni, F. F., 2014. Pemetaan potensi pengembangan lahan tambak garam di pesisir utara kabupaten pamekasan. J. Kelaut. 7, 1–11.

Ferguson, G., Gleeson, T., 2012. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Chang. DOI: 10.1038/nclimate1413

Freeze, R. A., Cherry, J. A., 1979. Groundwater, Prentice-Hall.

Gemilang, W. A., Kusumah, G., 2016. Gejala Intrusi Air Laut Di Daerah Pesisir Padelegan, Pademawu Dan Sekitarnya. J. Kelaut. Indones. J. Mar. Sci. Technol. 9, 99–106.

Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science (80-. ). 170, 1088–1090. DOI: 10.1126/science.170.3962.1088

Gopinath, S., Srinivasamoorthy, K., Vasanthavigar, M., Saravanan, K., Prakash, R., Suma, C. S., Senthilnathan, D., 2018. Hydrochemical characteristics and salinity of groundwater in parts of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India. Carbonates and Evaporites 33. DOI: 10.1007/s13146-016-0300-y

He, H. Y., Li, X. G., 2013. Hydrochemical characteristics and evolution laws of shallow groundwater in Shuangliao city. J. Chem. Pharm. Res. 5, 283–288.

Huang, G., Sun, J., Zhang, Y., Chen, Z., Liu, F., 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 463–464, 209–221. DOI: 10.1016/j.scitotenv.2013.05.078

Huizer, S., Radermacher, M., De Vries, S., Oude Essink, G. H. P., Bierkens, M. F. P., 2018. Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment. Hydrol. Earth Syst.

Sci. 22, 1065–1080. DOI: 10.5194/hess-22-1065-2018

Krishan, G., Singh, S., Cp, K., Pk, G., Gurjar, S., Nc, G., Chaudhary, A., 2016. Assessment of Groundwater Quality for Drinking Purpose by Using Water Quality Index ( WQI ) in Muzaffarnagar and Shamli Districts , Uttar Pradesh , 7, 1–4.

Kumar, P. J. S., Elango, L., James, E. J., 2014. Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai, India. Arab. J. Geosci. 7, 2641–2653. DOI: 10.1007/s12517-013-0940-3

Michael, H. A., Post, V. E. A., Wilson, A. M., Werner, A.D., 2017. Science, society, and the coastal groundwater squeeze. Water Resour. Res. DOI: 10.1002/2017WR020851

Mitra, B. K., Sasaki, C., Keijirou, E., 2006. Spatial and Temporal Variation of Ground Water Quality in Sand Dune Area of Aomori Prefecture in Japan. Am. Soc. Agric. Biol. Eng. 1. DOI: 10.13031/2013.20673

Mohammed, E., Abdennabi, E., Mahjoub, H., Albert, C., Boubker, E., 2012. Messinian salinity crisis impact on the groundwater quality in Kert aquifer NE Morocco: Hydrochemical and statistical approaches. Int. J. Water Resour. Environ. Eng. 4, 339–351. DOI: 10.5897/IJWREE12.002

Muchammad, A. N., Alam, B. Y. C. S., Yuningsih, E. T., 2017. Hidrogeokimia Airtanah Pada Daerah Pantai: Studi Kasus Dataran Rendah Katak, Desa Sumber Agung, Kabupaten Banyuwangi. Ris. Geol. dan Pertamb. 27, 39–46. DOI: 10.14203/risetgeotam2017.v27.442

Mustapha, A., Zaharin Aris, A., Juahir, H., Firuz Ramli, M., 2012. Surface water quality contamination source apportionment and physicochemical characterization at the upper section of the Jakara Basin, Nigeria. Arab. J. Geosci. 6, 4903–4915. DOI: 10.1007/s12517-012-0731-2

Poespowardoyo, S. R., 1986. Peta Hidrogeologi Indonesia Lembar VIII Surabaya (Jawa). Direktorat Geologi Tata Lingkungan, Bandung.

Ramakrishnaiah, C. R., Sadashivaiah, C., Ranganna, G., 2009. Assessment of water quality index for the groundwater in Tumkur taluk, Karnataka state, India. E-Journal Chem. 6, 523–530. DOI: 10.1155/2009/757424

Ramesh, K., Jagadeeswari, P. B., 2013. Contamination of Groundwater Due to Solid Waste Disposal and Textile Effluent in and Around Erode City, Tamil Nadu. Int. J. Res. Chem. Environ. 3, 262–271.

Revelle, R., 1941. Criteria for recognition of the sea water in ground‐waters. EOS, Trans. Am. Geophys. Union 22, 593–597. DOI: 10.1029/TR022i003p00593

Saeedi, M., Abessi, O., Sharifi, F., Meraji, H., 2010. Development of groundwater quality index. Environ. Monit. Assess. 163, 327–335. DOI: 10.1007/s10661-009-0837-5

Sahu, P., Sikdar, P. K., 2008. Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ. Geol. 55, 823–835. DOI: 10.1007/s00254-007-1034-x

Setiawan, T., 2014. Proses hidrogeokimia pengontrol salinitas air tanah tidak tertekan di utara Cekungan Air Tanah Jakarta. J. Lingkung. Dan Bencana Geol. 5, 39–51.

Setiawan, T., P, D. J., Brahmantyo, B., Irawan, D.E., 2010. Analisis Hidrokimia Untuk Interpretasi Sistem Hidrogeologi Daerah Kars. Widyariset 13, 1–8.

Shammas, M. I., Jacks, G., 2007. Seawater intrusion in the Salalah plain aquifer, Oman, in: Environmental Geology. pp. 575–587. DOI: 10.1007/s00254-007-0673-2

Siftianida, I. I., Wijatna, A. B., Pratikno, B., 2016. Aplikasi Isotop untuk Pendugaan Daerah Resapan Air Mata Air di Kecamatan Cijeruk, Kabupaten Bogor, Jawa Barat. J. Ilm. Apl. Isot. dan Radiasi 12, 97–106.

Situmorang, R. L., Agustianto, D. A., Suparman, M., 1992. Peta Geologi Lembar Waru-Sumenep, Jawa. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Yidana, S. M., Yidana, A., 2009. Assessing water quality using water quality index and multivariate analysis. Environ. Earth Sci. 59, 1461–1473. DOI: 10.1007/s12665-009-0132-3




DOI: http://dx.doi.org/10.14203/risetgeotam2019.v29.1005

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Wisnu Arya Gemilang, Hendra Bakti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: