Active Fault Zones of The 2006 Yogyakarta Earthquake Inferred from Tilt Derivative Analysis of Gravity Anomalies

Lina Handayani

Abstract


The 2006 Yogyakarta Earthquake had caused a disaster in Bantul area. Several institutions had reported different results for the epicenter location. However, aftershocks studies indicated that the rupture area was at about 10 km east of Opak Fault. Analysis of gravity anomaly, including several degrees of residual anomalies and tilt derivative, facilitated this regional tectonic study to determine the structural constraints on the main earthquake and its aftershocks. The Yogyakarta area was primarily characterized by several SW-NE faults; one of them is the Opak Fault. Among those faults,, there are a series of WNW-ESE faults. Several groups of these lineations indicated a presence of some pairs of parallel strike-slips faults that formed pull-a-part basins. The obtained structural pattern has signified the dynamic response of the force from the subduction of the Australian Plate toward Sunda (Eurasia) Plate.  The subduction force produced the strike-slip fault in a parallel direction of subduction, and subsequently, the faults caused the formation of thrust structures that are perpendicular to them.

Gempabumi Yogyakarta pada tahun 2006 telah menyebabkan bencana di daerah Bantul dan sekitarnya. Lokasi episenter yang ditentukan oleh beberapa lembaga menunjukkan hasil yang berbeda. Tetapi analisa gempabumi susulan telah menunjukkan daerah pegerakan hingga 10 km ke sebelah timur dari Sesar Opak. Analisa anomali gayaberat yang terdiri dari perhitungan anomali sisa dan turunan kemiringan (tilt derivative) diharapkan dapat membantu studi tektonik regional dalam menentukan batasan struktur yang menyebabkan kejadian gempabumi di daerah Yogyakarta. Daerah ini dicirikan oleh sesar-sesar berarah BD (Barat daya)-TL (Timur laut), yang salah satunya adalah Sesar Opak. Di antara sesar-sesar tersebut, terdapat pula deretan sesar-sesar berarah BBL (Barat barat laut)-TTG (Timur tenggara). Beberapa kelompok kelurusan-kelurusan membentuk kemungkinan adanya cekungan pull-a-part, yang terbentuk karena adanya deretan sesar-sesar strike-slip. Pola struktur yang diperoleh menunjukkan respon dinamik dari subduksi Lempeng Australia terhadap Lempeng Eurasia (Sunda). Tekanan dari gaya subduksi menyebabkan terbentuknya sesar-sesar strike-slip. Kemudian sesar-sesar tersebut menyebabkan adanya struktur sesar naik yang tegak lurus terhadapnya.



Keywords


Yogyakarta 2006 earthquake, structural constraints, Opak Fault, gravity, tilt derivative

Full Text:

PDF

References


Abidin, H. Z., Andreas, H., Kato, T., Ito, T., Meilano, I., Kimata, F., Natawidjaya, D. H., Harjono, H., 2009. Crustal deformation studies in Java (INDONESIA ) USING GPS. J. Earthq. Tsunami 3, 77–88.

Anggraini, A., Sobiesiak, M., Walter, T. R., Luehr, B. G., 2011. The 26 May 2006 Yogyakarta Earthquake: Its aftershocks and Its Relation Towards the Regional Seismotectonic Setting, in: American Geophysical Union Fall Meeting. p. T14A–05.

Blakely, R. J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, UK. DOI:10.1017/CBO9780511549816

Chingtham, P., Chingtham, P., Sharma, B., Chopra, S., SinghaRoy, P., 2016. Statistical analysis of aftershock sequences related with two major Nepal earthquakes: April 25, 2015, MW 7.8, and May 12, 2015, MW 7.2. Ann. Geophys. 59, S0540. DOI:10.4401/ag-7025

Diambama, D., Anggraini, A., Nukman, M., Luehr, B. G., Suryanto, Wiwit, 2018. Velocity Structure around the 2006 M6.3 Yogyakarta Earthquake Zone Inferred from Seismic Tomography, in: 20th EGU General Assembly, EGU 2018. p. 2156.

Ghosh, G. K., 2016. Interpretation of Gravity Data using 3D Euler Deconvolution, Tilt Angle, Horizontal Tilt Angle and Source Edge Approximation of the North-West Himalaya. Acta Geophys. 64, 1112–1138. DOI:10.1515/acgeo-2016-0042

Grandis, H., Nurhasan, N., Widarto, D. S., Mogi, T., 2006.

Importance of Geophysical Investigations of Active Faults and Crustal Structures in Earthquake Hazard Mitigation, in: International Workshop on Integration of Geophysical Parameter as a Set of Large Earthquake Precursors,. BMG - LIPI - ITB.

Hinze, W. J., von Frese, R. R. B., Saad, A. H., 2013. Gravity and Magnetic Exploration, 1st ed. Cambridge University Press, Cambridge, UK. DOI: 10.1017/CBO9780511843129

Husein, S., Sudarno, I., Pramumijoyo, S., Karnawati, D., 2010. Paleostress Analysis To Interpret the Landslide Mechanism: a Case Study in Parangtritis, Yogyakarta. J. Southeast Asian Appl. Geol. 2, 104–109. DOI:10.13140/RG.2.1.2325.3200

Husni, Y. M., Nugraha, A. D., Rosalia, S., Zulfakriza, Sahara, D. P., 2018. Aftershock location determination of the 27 May 2006, M 6.4 Yogyakarta earthquake using a non-linear algorithm: A preliminary results, in: AIP Conference Proceedings 1987, p. 020049. DOI:10.1063/1.5047334

Karnawati, D., Pramumijoyo, S., Hendrayana, H., 2006. Geology of Yogyakarta , Java. In: IAEG2006 Proceeding. The Geological Society of London, 1–7.

Kawazoe, Y., Koketsu, K., 2010. Source Fault and RUpture Process of the 2006 Yogyakarta Earthquake, in: American Geophysical Union, Fall Meeting. p. S43A–2030.

Lowrie, W., 2007. Fundamentals of Geophysics, second edition. Cambridge University Press, Cambridge, UK. DOI:10.1017/CBO9780511807107

Nasuti, A., Pascal, C., Ebbing, J., 2012. Onshore-offshore potential field analysis of the Møre-Trøndelag Fault Complex and adjacent structures of Mid Norway. Tectonophysics 518–521, 17–28. DOI:10.1016/j.tecto.2011.11.003

Noda, A., 2013. Strike-Slip Basin – Its Configuration and Sedimentary Facies, in: Itoh, Y. (Ed.), Mechanism of Sedimentary Basin Formation. Intech, pp. 27–57. DOI:10.5772/56593 47

Ogata, Y., Tsuruoka, H., 2016. Statistical monitoring of aftershock sequences: A case study of the 2015 Mw7.8 Gorkha, Nepal, earthquake the 2015 Gorkha, Nepal, Earthquake and Himalayan Studies: First Results 4. Seismology. Earth, Planets Sp. 68. DOI:10.1186/s40623-016-0410-8

Rahardjo, W., Sukandarrumidi, Rosidi, H. M. D., 1995. Geological Map of the Yogyakarta Quadrangle, Java. Geological Survey of Indonesia.

Saad, A. H., 2006. Understanding gravity gradients—a tutorial. Lead. Edge 25, 942–949. DOI:10.1190/1.2335167

Saada, S. A., 2016. Edge detection and depth estimation of Galala El Bahariya Plateau, Eastern Desert-Egypt, from aeromagnetic data. Geomech. Geophys. Geo-Energy Geo-Resources 2, 25–41. DOI:10.1007/s40948-015-0019-6

Setijadji, A. L. D., Fukuoka, B. K., Ehara, C. S., 2007. Geology of Yogyakarta earthquakes 2006 (Central Java , Indonesia ): Current understanding based on integration of research outputs in Geology, Geophysics and Remote Sensing, 9, 9–10.

Sulaeman, C., Dewi, L. C., Triyoso, W., 2008. Karakterisasi sumber gempa Yogyakarta 2006 berdasarkan data GPS. J. Geol. Indonesia. 3, 49–56.

Syafri, I., Budiadi, E., Sudradjat, A., 2013. Geotectonic Configuration of Kulon Progo Area , Yogyakarta Konfigurasi Tektonik Daerah Kulon Progo , Yogyakarta. Indones. J. Geol. 8, 185–190.

Tsuji, T., Yamamoto, K., Matsuoka, T., Yamada, Y., Onishi, K., Bahar, A., Meilano, I., Abidin, H. Z., 2009. Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry. Earth, Planets Sp. 61, e29–e32.

DOI:10.1186/BF03353189

Untung, M., Sato, Y., 1978. Gravity and geological studies in Jawa, Indonesia, Spesial Pu. ed. Direktorat Geologi, Indonesia, Bandung.

Utsu, T., 1970. Aftershocks and Earthquake Statistics ( I ). J. Fac. Sci. Geophys. 3, 129–195.

Verduzco, B., Fairhead, J. D., MacKenzie, C., 2004. New insights into magnetic derivatives for structural mapping. Lead. Edge 23, 116–119.

Walter, T. R., Wang, R., Luehr, B. G., Wassermann, J., Behr, Y., Parolai, S., Anggraini, A., Günther, E., Sobiesiak, M., Grosser, H., Wetzel, H. U., Milkereit, C., Sri Brotopuspito, P. J. K., Harjadi, P., Zschau, J., 2008. The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster? Geochemistry, Geophys. Geosystems 9, 1–9. DOI:10.1029/2007GC001810

Widijono, B. S., Setyanta, B., 2007. Anomali gaya berat, kegempaan serta kelurusan struktur geologi daerah Yogyakarta dan sekitarnya. J. Sumber Daya Geol. 17, 74–90.

Wulandari, A., Anggraini, A., Suryanto, W., 2018. Hypocenter Analysis of Aftershocks Data of the Mw 6.3, 27 May 2006 Yogyakarta Earthquake Using Oct-Tree Importance Sampling Method. Appl. Mech. Mater. 881, 89–97. DOI:10.4028/www.scientific.net/AMM.881.89




DOI: http://dx.doi.org/10.14203/risetgeotam2019.v29.1018

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Lina Handayani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: