Geothermal Reservoir Identification based on Gravity Data Analysis in Rajabasa Area- Lampung

Muh Sarkowi, Rahmat Catur Wibowo


Gravity research in the Rajabasa geothermal prospect area was conducted to determine geothermal
reservoirs and faults as reservoir boundaries. The research includes spectrum analysis and separation of the Bouguer anomaly to obtain a residual Bouguer anomaly, gradient analysis using the second vertical derivative (SVD) technique to identify fault structures or lithological contact, and 3D inversion modeling of the residual Bouguer anomaly to obtain a 3D density distribution subsurface model. Analysis was performed based on all results with supplementary data from geology, geochemistry, micro-earthquake (MEQ) epicenter distribution map, and magnetotelluric (MT) inversion profiles. The study found 3 (three) geothermal reservoirs in Mount Balirang, west of Mount Rajabasa, and south of Pangkul Hot Spring, with a depth of around 1,000-1,500 m from the ground level. Fault structures and lithologies separate the three reservoirs. The location of the reservoir in the Balirang mountain area corresponds to the model data from MEQ, temperature, and magnetotelluric resistivity data. The heat source of the geothermal system is under Mount Rajabasa, which is indicated by the presence of high-density values (might be frozen residual magma), high-temperature values, and the high number of micro-earthquakes epicenters below the peak of Mount Rajabasa.


geothermal, gravity, Lampung, Rajabasa, reservoir

Full Text:



Abdelrahman, E.M., 1996. Shape and depth solutions from moving average residual gravity anomalies. J. Appl. Geophys. 36, 89–95.

IGA., 2014. Best Practices Guide For Geothermal Exploration. Bochum.

Björbsson, G., Bodvarsson, G., 1990. A survey of geothermal reservoir properties. Geothermics 19, 17–27.

Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications, Program. Cambridge University Press.

Brehme, M., Deon, F., Haase, C., Wiegand, B., Kamah, Y., Sauter, M., Regenspurg, S., 2016. Durch Störungszonen kontrollierte geochemische Eigenschaften des geothermischen Reservoirs Lahendong in Indonesien. Grundwasser 21, 29–41.

Bronto, S., Asmoro, P., Hartono, G., Sulistiyono, 2012. Evolution of Rajabasa Volcano in Kalianda Area and Its Vicinity, South Lampung Regency Evolusi Gunung Api Rajabasa di daerah Kalianda dan Sekitarnya, Kabupaten Lampung Selatan. Indones. J. Geosci. 7, 11–25.

Buyung, N., Walker, A.S.D., 1991. Laporan Penyelidikan Geofisika Gunung Rajabasa.

Daruwati, I.K.A., 2014. Fault Modelling Based on Local Magnetic Anomaly Data in Geothermal Prospect Area Rajabasa Lampung, in: Proceedings of The 4th Annual International Conference Syiah Kuala University (AIC Unsyiah) 2014. Banda Aceh, pp. 72–78.

Elkins, T.A., 1951. The second derivative method of gravity interpretation. Geophysics 16, 29–50.

Haerudin, N., Pardede, V.J., Rasimeng, S., Fisika, J., Universitas, F., 2009. Analisis Reservoar Daerah Potensi Panasbumi Gunung Rajabasa Kalianda dengan Metode Tahanan Jenis dan Geotermometer. J. ILMU DASAR 10, 141–146.

Haerudin, N., Suryanto, W., Sarkowi, M., Risdianto, D., 2014. Magnetic And Gravity Modeling to Determine Reservoir Depth and Prospect Area at Rajabasa Lampung, in: International Conference on Mathematics, Science, and Education 2014 (ICMSE 2014). Semarang.

Haerudin, N., Wahyudi, Suryanto, W., Sarkowi, M., 2013. Analysis of The 3D Geothermal Reservoir Model from Anomaly Magnetic Data Using Mag3D, in: The Third Basic Science International Conference. pp. 1–5.

Harvey, C., 2014. Best Practices Guide For Geothermal Exploration. Bochum.

Hasibuan, R.F., Ohba, T., Abdurrachman, M., Hoshide, T., 2020. Temporal variations of petrological characteristics of Tangkil and Rajabasa volcanic rocks, Indonesia. Indones. J. Geosci. 7, 135–159.

Jones, F., 2006. A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures. Vancouver.

Mangga, S.A., Amirudin, Suwarti, T., Gafoer, S., Sidarta, 1993. Peta Geologi Lembar Tanjungkarang, Sumatera, skala 1:250.000.

Mussofan, W., Powell, T., Sutrisno, L., Sihotang, M. a, 2015. Geochemistry Model of Chloride Springs Origin near Sea Coastal Area : Case Study from Rajabasa Geothermal Field. World Geotherm. Congr. 2015 19–25.

Mussofan, W., Sutrisno, L., Ramadhan, I., Aulia, N., 2016. Geological Aspects to Constrain Geothermal Conceptual Model : Gunung Rajabasa Case Study, in: Proceedings The 4th Indonesia International Geothermal Convention & Exhibition 2016. Jakarta.

Rasimeng, S., 2008. Daerah Prospek Geothermal Berdasarkan Data Anomali Medan. J. Sains MIPA 14, 67–72.

Saefulhak, Y., 2017. Potensi Panas Bumi Indonesia Jilid 1, Direktorat Panas Bumi, Ditjen EBTKE.

Sarkowi, M., Wibowo, R.C., 2021. Reservoir Identification of Bac-Man Geothermal Field Based on Gravity Anomaly Analysis and Modeling. J. Appl. Sci. Eng. 25, 329–338.

Setiadi, I., Styanta, B., Widijono, B.S., 2010. Delineasi cekungan sedimen sumatra selatan berdasarkan analisis data gaya berat. J. Geol. dan Sumber Daya Miner. 20, 93–106.

Sumintadireja, P., Dahrin, D., Grandis, H., 2018. A Note on the Use of the Second Vertical Derivative ( SVD ) of Gravity Data with Reference to Indonesian Cases. J. Eng. Technol. Sci. 50, 127–139.

Suswati, Haerani, N., Sutawidjaja, I., 2001. Laporan Pemetaan Geologi Gunung Api Rajabasa, Lampung. Bandung. (unpublished).

Witter, J.B., Siler, D.L., Faulds, J.E., Hinz, N.H., 2016. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA. Geotherm. Energy 4.



  • There are currently no refbacks.

Copyright (c) 2021 Research Center for Geotechnology - Indonesian Institute of Sciences

Copyright of Journal RISET Geologi dan  Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS


Indexed by:



Plagiarism checker: