ANALISIS PETROGRAFI DAN X-RAY DIFFRACTION UNTUK DETEKSI KALSIT NON DESTRUKTIF DARI FOSIL KARANG PORITES ENDAPAN TERUMBU KUARTER KENDARI, SULAWESI TENGGARA

Bagus Dinda Erlangga, Dedi Mulyadi, Sri Yudawati Cahyarini

Abstract


Komposisi utama karang adalah berupa mineral aragonit. Adanya mineral kalsit didalam karang merupakan hasil ubahan (diagenesa) dari mineral aragonit. Diagenesa merupakan proses perubahan nilai kandungan unsur kimia yang dipengaruhi oleh faktor lingkungan dan iklim. Dengan mengetahui diagenesa skeleton karang diharapkan dapat merekontruksi iklim masa lalu. Tujuan penelitian ini adalah untuk mengetahui sejauh mana diagenesa yang terjadi pada sampel karang yang diindikasikan dengan persentasi kandungan mineral kalsit. Kandungan kalsit sebagai material diagenesis lebih dari 1% mampu mempengaruhi parameter iklim hasil rekonstruksi data kimia karang. Contoh fosil karang Porites dari endapan karbonat di wilayah Kendari Sulawesi Tenggara yaitu BG2, BG3-B1, dan BG3-C digunakan dalam studi ini. Hasil penelitian memperlihatkan bahwa pada ketiga sampel karang Porites terjadi diagenesa dari aragonit menjadi kalsit (calcitization) baik secara petrografi yang terlihat pada adanya struktur semen kalsit dan secara difraksi XRD diketahui dari adanya perubahan yang terjadi sebesar 0,5 - 2,9%. Contoh fosil BG3-C merupakan yang paling tinggi persentase perubahan aragonit menjadi kalsitnya, yaitu 2,9% dibandingkan dengan dua contoh lainnya (0,5%). Hasil penelitian dari contoh karang ini dapat digunakan sebagai data pendukung untuk studi rekonstruksi iklim ataupun lingkungan dengan menggunakan data proxy geokimia dalam karang.

 

Coral skeleton are mainly consist of aragonite mineral. Calcite mineral content in coral skeleton indicates the alteration of aragonite mineral through diagenetic process. The diagenetic materials (e.g. calcite, secondary aragonite) may influence the climate parameter reconstruction based on coral geochemical proxy. This research aimed to determine the diagenetic material (i.e. calcite amount) content in the fossil Porites coral samples. Porites samples BG2, BG3 B1 and BG3-C from Kendari carbonate terrace were used in this study. XRD analysis and petrographic analysis were used to analyze the amount of calcite mineral. The results show that three samples of Porites corals perform the structure of calcite cement (i.e. based on petrographic analysis) and calcite mineral content range from 0.5% to 2.9% (based on XRD analysis). Porites fossil sample BG3-C has the highest content of calcite mineral (2.9%) and the other two samples (BG2, Bg3-B1) have 0.5% calcite mineral content. The results of this study support further study of climate reconstruction using coral geochemical proxy.


Keywords


porites coral, diagenetic, petrographic, X-ray diffraction

References


Allison N., Finch, A.A., Webster, J.M., Clague, D.A., 2007. Palaeoenvironmental Records from Fossil Corals: The Effects of Submarine Diagenesis on Temperature and Climate Estimates. Geochimia et Cosmochimica Acta 71, 4693–4703, DOI: 10.1016/j.gca.2007.07.026.

Bathurst, R.G.C., 1975. Developments in Sedimentology 12, Carbonate Sediments and Their Diagenesis. Elsevier. New York, Amsterdam, Oxford, 658 pp.

Cahyarini S.Y., Pfeiffer, M., Timm, O., Chr.Dullo, W., garbe-Schoenberg, D., 2008. Reconstructing Seawater d18O from Paired Coral d18O and Sr/Ca Ratios: Methods, Error Analysis and Problems, with Examples from Tahiti (French Polynesia) and Timor (Indonesia). Geochimica et Cosmochimica Acta, 72 (12), 2841-2853,DOI: 10.1016/j.gca.2008.04.005.

Cahyarini S.Y., Pfeiffer, M., Chr.Dullo, W., 2009. Calibration of the Multicores Sr/Ca records-Sea Surface Temperature: Records from Tahiti Corals (French Polynesia). International Journal of Earth Sciences, 98, 31-40, DOI: 10.1007/s00531-008-0323-2.

Cahyarini S.Y., Pfeiffer, M., Nurhati, I.S., Aldrian, E., Chr.Dullo, W., Hetzinger, S., 2014. Twentieth century sea surface temperature and salinity variations at Timor inferred from paired coral δ18O and Sr/Ca measurements. Journal of Geophysical Research, 119, 4593-4604,

DOI: 10.1002/2013JC009594

Dalbeck, P., Cusack, M., Dobson, P.S., Allison, N., Fallick, A.E., Tudhope, A.W., EIMF, 2011. Identification and Composition of Secondary Meniscus Calcite in Fossil Coral and the Effect on Predicted Sea Surface Temperature. Chemical Geology, 280 (3), 314–322.

DOI: 10.1016/j.chemgeo.2010.11.018

Flugel, E., 2004. Microfacies of Carbonate Rock. Springer, Inc., New York, 575- 583.

Han, Y.S., Hadiko, G., Fuji, M., Takahashi, M., 2006. Factors Affecting the Phase and Morphology of CaCO3 Prepared by a Bubbling Method. Journal of the European Ceramic Society, 26 (4-5), 843-847. DOI: 10.1016/j.jeurceramsoc.2005.07.050

Hendy E.J., Gagan M.K., Lough, J.M., McCulloch, M., deMenocal, P.B., 2007. Impact of Skeletal Dissolution and Secondary Aragonite on Trace Element and Isotopic Climate Proxies in Porites Corals. Paleoceanography, 22, PA4101,DOI: 10.1029/2007PA001462.

Lailiyah, Q., Baqiya, M.A., Darminto., 2012. Pengaruh Temperatur dan Laju Aliran Gas CO2 pada Sintesis Kalsium Karbonat Presipitat dengan Metode Bubbling. Jurnal Sains dan Seni ITS, 1 (1), 1-5. ISSN: 2301-928X

Longman W.M., 1980. Carbonate Digenetic Textures From Nearsurface Diagenetic Envirinments. The AmericanAssisiation Of Petroleum Geologists Bulletin. 64, 461-487.

DOI: 10.1306/2F918A63-16CE-11D7-8645000102C1865D

McGregor, H.V., and Gagan, M.K., 2003. Diagenesis and Geochemistry of Porites Corals from Papua New Guinea: Implications for Paleoclimate Reconstruction. Geochimica et Cosmochimica Acta, 67, 2147-2156, DOI: 10.1016/S0016-7037(02)01050-5.

McGregor, H.V. and Abram, N.J., 2008. Images of Diagenetic Textures in Porites Corals from Papua New Guinea and Indonesia. Geochemistry, Geophysics, Geosystems, 9 (10),

DOI: 10.1029/2008GC002093.

Sabriye, Piskin, Ozgul., Ozdemir, D., 2012. Effect of Process Conditions on Crystal Structure of Precipitated Calcium Carbonate (CaCO3) From Fly Ash: Na2CO3 Preparation Conditions. International Journal of Biological, Ecological and Environmental Sciences (IJBEES), 1(6), 192-195.

Sayani, H.R., Cobb, K.M., Cohen, A.L., Elliott, W.C., Nurhati, I.S., Dunbar, R.B., Rose, K.A., Zaunbrecher, L.K., 2011. Effects of Diagenesis on Paleoclimate Reconstructions from Modern and Young Fossil Corals. Geochimica et Cosmochimica Acta, 75, 6361-6373, doi:10.1016/j.gca.2011.08.026.

Smallman, R.E., and Bishop, R.J., 2000. Metalurgi Fisik Modern dan Rekayasa Material. Jakarta: Erlangga, 145 pp.




DOI: http://dx.doi.org/10.14203/risetgeotam2016.v26.263

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Bagus Dinda Erlangga, Dedi Mulyadi, Sri Yudawati Cahyarini

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: