GEOLOGI TEKNIK SEDIMEN KUARTER DAN BAHAYA AMBLESAN, LIKUIFAKSI DI SERANGAN – TUBAN – TANJUNG BENOA, BALI

Eko Soebowo

Abstract


Wilayah pesisir pada cekungan sedimen Kuarter di daerah Serangan – Tuban – Tanjung Benoa, Bali Selatan sebagai kawasan pengembangan tataruang dan infrastruktur perlu mendapat perhatian terkait dengan kondisi geologi teknik bawah permukaan dan ancaman bahaya geologinya. Tulisan ini bertujuan untuk mengetahui karakteristik geologi teknik sedimen bawah permukaan berkaitan dengan ancaman bahaya amblesan dan likuifaksi. Metode penelitian meliputi pemboran teknik, pengujian penetrasi konus, pengujian laboratorium geoteknik dan analisis geologi teknik.  Hasil penelitian menunjukkan ketebalan sedimen Kuarter mencapai kurang lebih 20 meter, terdiri dari tanah penutup, lempung, lanau – lempung, perselingan lanau - pasir lempungan, sisipan kerikil, pasir kasar dan batugamping sebagai batuan dasar. Keberadaan lapisan lempung sangat lunak hingga lunak, plastitas tinggi, kuat geser rendah, dicirikan nilai tahanan konus qt  < 2 MPa dan nilai  N-SPT  < 2  pada kedalaman –0,5 hingga –20 meter tersebar di Serangan – Tuban, mengindikasikan ancaman bahaya amblesan. Sedangkan keberadaan lapisan lanau – pasir sangat lepas-lepas, dicirikan nilai tahanan konus qt  < 5 MPa dan nilai  N-SPT  < 10 di permukaan hingga kedalaman -15 m  tersebar di daerah Kedonganan – Tanjung Benoa – Serangan, mengindikasikan kerentanan terhadap likuifaksi akibat gempabumi.  Gambaran sifat keteknikan secara vertikal dan spasial dapat memberikan informasi untuk perencanaan dan pencegahan risiko ancaman amblesan dan likuifaksi pada sedimen cekungan Kuarter Bali Selatan.

The rapid development in the coastal area on the Quaternary sedimentary basin of Serangan - Tuban - Tanjung Benoa, South Bali requires attention regarding its subsurface engineering geology and associated geological hazard. This paper presents the characteristics of subsurface sediment from engineering geology related to the potential hazards of subsidence and liquefaction. The utilized methods included geotechnical boring, cone penetration test, geotechnical laboratory tests and engineering geology analysis.  Results showed that the thickness of Quarternary sediment reaches 20 m, consisting of top soil, clay, clayey - silt, intercalation of silt and clayey sand, gravel, coarse sand and limestone as the baserock.  The occurrence of very soft to soft clay, highly plastic with low shear strength at the depth of -0.5 to -10 m, characterized by cone resistance qt< 2 MPa and N-SPT value < 2 is distributed in Serangan – Tuban and indicated to be subsidence prone. Meanwhile the very loose to loose silt-clay of cone resistance qt < 5 MPa and  N-SPT value <10 is distributed in Kedongan – Tanjung Benoa - Serangan, and indicated to be susceptible to earthquake induced liquefaction. The spatial and vertical engineering profiles of the subsurface geology provide valueable information for planning and mitigation of subsidence and liquefaction hazards in the sediment from Quaternary basin of South Bali.  


Keywords


engineering geology, geological hazards, Quaternary sediment, South Bali

References


Amorosi, A., & Marchi, N,. 1999. High-resolution sequence stratigraphy from piezocone tests: an example from the Late Quaternary deposits of the southeastern Po Plain. Sedimentary Geology, 128(1), 67-81. DOI: 10.1016/S0037-0738(99)00062-7

Boggs, S., 2006. Principles of Sedimentology and Stratigraphy (4th edition). Pearson Prentice Hall, Upper Saddle River, NJ.

Daryono, 2011. Identifikasi Sesar Belakang Busur (Back Arc Thrust) daerah Bali Berdasarkan Seismisitas dan Solusi Bidang Sesar, Artikel Kebumian, Badan Metereologi Klimatologi dan Geofisika, www.bmkg.go.id, 5 Januari 2011.

Das, B.M., 1997. Advanced Soil Mechanics, Second edition. Taylor & Francis Publishers, 457 h.

Delgado, J., Alfaro, P., Andreu, J. M., Cuenca, A., Doménech, C., Estévez, A., dan Yébenes, A., 2003. Engineering-geological model of the Segura River flood plain (SE Spain): a case study for engineering planning. Engineering Geology, 68(3), 171-187. DOI: 10.1016/S0013-7952(02)00226-0

Hadiwidjojo, P, MM, Samodera, H dan Amin, T.C., 1998. Peta geologi lembar Bali, NusaTenggara, Pusat Penelitian dan Pengembangan Geologi, Bandung, Departemen Pertambangan dan Energi.

Irsyam, M., Sengara, W., Aldiamar, F., Widiyantoro, S., Triyoso, W., Kertapati, E., Natawidjaja, D. H., Meilano, I., Soehardjono, Asrurifak, Ridwan, M., 2010. Peta Zonasi Gempa Indonesia, Kementerian Pekerjaan Umum.

McCaffrey R. and Nabalek, J., 1987. Earthquake, gravity, and the origin of the Bali Basin : An example of nascent continental fold and thrust belt., Jour.Geophys.Res. 441 – 459.

DOI: 10.1029/JB092iB01p00441

Mio, G. D., & Giacheti, H. L., 2007. The use of piezocone tests for high-resolution stratigraphy of Quaternary Sediment Sequences in the Brazilian coast. Anais da Academia Brasileira de Ciências, 79(1), 153 - 170. DOI: 10.1590/S0001-37652007000100017

Mayerhoff, G.G., 1956. Penetration test and bearing capacity of cohesionless soils, J.Soil Mech. Found.Div., ASCE, 28 (1).

Robertson. P.K., Campanella, R.G., Gillespie, D., and Greig, J., 1986. Use of Piezometer Cone data. In-Situ’86 Use of In-situ testing in Geotechnical Engineering, GSP 6 , ASCE, Reston, VA, Specialty Publication, pp 1263-1280.

Robertson, P.K., 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1): 151-158. DOI: 10.1139/t90-014

Robertson, P. K., 2006. Guide to in situ testing. Gregg Drilling and testing Incorporated.

Rogers, J. D., 2006, Subsurface Exploration Using the Standard Penetration Test and the Cone Penetrometer Test, Environmental & Engineering Geoscience, Vol. XII, No. 2, May 2006, pp. 161–179. DOI: 10.2113/12.2.161

Royse, K. R., Rutter, H. K., & Entwisle, D. C., 2009. Property attribution of 3 D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bulletin of Engineering Geology and the Environment, 68(1), 1 - 16. DOI: 10.1007/s10064-008-0171-0

Soebowo, E, Kumoro, Y, Ruslan, M, Daryono, M.R, Sukaca, Widodo., 2011. Model Mitigasi Bahaya Likuifaksi Untuk Daerah Rawan Gempabumi di Daerah Sanur – Benoa, Bali Selatan, Laporan Teknis, Puslit Geoteknologi – LIPI, Bandung.

Styllas, M., 2014. A simple approach to define Holocene sequence stratigraphy using borehole and cone penetration test data. Sedimentology, 61(2), 444 - 460. DOI: 10.1111/sed.12061

Perda Kota Denpasar, 2011. tentang Rencana Tata Ruang Wilayah Kota Denpasar 2011 - 2031

Valverde-Palacios, I., Valverde-Espinosa, I., Irigaray, C., & Chacón, J., 2014. Geotechnical map of Holocene alluvial soil deposits in the metropolitan area of Granada (Spain): a GIS approach. Bulletin of Engineering Geology and the Environment, 73(1), 177 - 192. DOI: 10.1007/s10064-013-0540-1

U.S. Army Corps of Engineers, 1990. EM-1110-1-1904 Settlement analysis: Engineer manual, Joint Departments of the Army and Air Force, Washington, D.C. http://www. publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-1-1904.pdf. [Diakses: 20 January, 2016].




DOI: http://dx.doi.org/10.14203/risetgeotam2016.v26.279

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Eko Soebowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: