ANALISIS KESTABILAN LERENG DI DESA TERBAH DAN SEKITARNYA, KECAMATAN PATUK, KABUPATEN GUNUNG KIDUL BERDASARKAN SLOPE STABILITY PROBABILITY CLASSIFICATION

Alvian Rizky Yanuardian, I Gde Budi Indrawan, I Wayan Warmada

Abstract


Desa Terbah merupakan salah satu desa di Indonesia yang rawan longsor. Daerah ini berada pada sedimen Tersier yang telah mengalami deformasi dan pelapukan kuatyang berpotensi longsor,sehingga diperlukan analisis kestabilan lereng untuk upaya mitigasi. Tulisan ini bertujuan mengidentifikasi karakteristik satuan geologi teknik lereng dan nilai probabilitas tingkat kestabilan lereng. Metode penelitian yang digunakan yaitu pengamatan tingkat pelapukan, pengukuran bidang diskontinuitas (spasi, kekasaran, lebar bukaan) pada lereng berdasarkan metode Rock Mass Rating (RMR), pengujian laboratorium menggunakan point load test, dan analisis kestabilan lereng dengan metode kinematika dan Slope Stability Probability Classification (SSPC). Hasil penelitian menunjukkan bahwa terdapat lima satuan geologi teknik batuan, yaitu: Satuan  Breksi Andesit 1, Satuan Breksi Andesit 2, Satuan Tufa, Satuan Batupasir Tufan, dan Satuan Batupasir. Hasil pengukuran pada 35 lereng menunjukkan 14 lereng berada dalam kondisi tidak stabil berdasarkan kestabilan lereng orientasi independen (tidak terpengaruh diskontinuitas), dan 18 lereng berpotensi terjadi longsor gelinciran (sliding), dan 14 lereng berpotensi terjadi longsor robohan (toppling) berdasarkan orientasi dependen (terpengaruh diskontinuitas).

Terbah village is one of the rural areas in Indonesia that has high vulnerability to landslide. This area occupies the Tertiary sediment which had been deformed and highly weathered, therefore prone to landslide. It is important to analyze the slope stability of the study area as a part of the mitigation measures. This paper aims to identify the engineering geological units and the probability values of the slope stability. Methods included the observation of weathering degree, measurement of slope discontinuities (space, roughness, width of opening) according to Rock Mass Rating (RMR), point load test in the laboratory, and slope stability analysis using kinematic method and Slope Stability Probability Classification (SSPC). Results show that there are five engineering geological units: Andesitic Breccia Unit 1, Andesitic BrecciaUnit 2, Tuff unit, Tuffaceous Sandstone Unit, and Sandstone Unit. Measurements of 35 slopes show that based on orientation independent analysis 14 slopes are unstable, and based on orientation dependent analysis 18 slopes are prone to sliding and 14 slopes are susceptible to toppling.


Keywords


slope stability, Tertiary sediment, kinematic analysis, Slope Stability Probability Classification (SSPC), Rock Mass Rating (RMR).

References


ASTM, D 5731 – 02, Standard Test Method for Determination of The Point Load Strength Index of Rock, West Conshohocken, ASTM International.

ASTM, D 6473 – 99, Standard Test Method For Specific Gravity and Absorption of Rock for Erosion Control, West Conshohocken, ASTM International.

Basahel, H., dan Mitri H., 2017, Application of Rock Mass Classification Systems to Rock Slope Stabilty Assessmen, Journal of Rock Mechanics and Geotechnical Engineering, 9, 993 - 1009.

DOI: 10.1016/j.jrmge.2017.07.007

Canal, A., dan Akin, M., 2016, Assessment of Rock Slope Stability by Probabilistic-Based Slope Stability Probability Classification Method Along Highway Cut Slope in Adilcevaz-Biltis (Turkey), Journal of Mountain Scicence, 13, 1893 - 1909. DOI: 10.1007/s11629-016-3954-y

Goodman, R. E., 1989, Introduction to Rock Mechanics, Canada, John Wiley & Sons.

Hack, H. R. G. K., 1996, Slope Stability Probability, Netherland, International Institue for Aerospace Survey and Earth Science (ITC).

Miscevic, P., dan Vlastelica, G., 2014, Impact of Weathering on Slope Stability in Soft Rock Mass, Journal of Rock Mech. And Geotechnical Eng., 6, 240-250. DOI: 10.1016/j.jrmge.2014.03.006

Pantelidis, L., 2009, Rock Slope Stability Assessment Trough Rock Mass Classification Systems, International Journal of Rock Mechanics & Mining Sciences, 46, 315 – 325.

DOI: 10.1016/j.ijrmms.2008.06.003

Stead D., and Wolter A., 2015. A Critical Review of Rock Slope Failure Mechanism. Canada, Journal of Strucutral Geology, 74, 1-23. DOI: 10.1016/j.jsg.2015.02.002

Sugiyanto dan Hermawan 2006. Peta Geologi Teknik Daerah Yogyakarta – Klaten, Bandung, Pusat Lingkungan Geologi.

Willey D. C., and Mah C. W., 1974, Rock Slope Engineering, New York, Spons Press.

Zhou, J., Wei, J., Yang, T., Zhu, W., Li, L., Zhang, P., 2018. Damage Analysis of Rock Mass Coupling Joints, Water, and Microseismicity. Tunneling and Underground Space Technology, 71, 366-381.

DOI: 10.1016/j.tust.2017.09.006




DOI: http://dx.doi.org/10.14203/risetgeotam2018.v28.745

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Alvian Rizky Yanuardian, I Gde Budi Indrawan, I Wayan Warmada

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: