MODEL KERENTANAN GERAKAN TANAH WILAYAH KECAMATAN CILILIN MENGGUNAKAN TRIGRS

Erizky Ade Kurniawan, Adrin Tohari, Indra Permanajati

Abstract


Upaya pengurangan risiko gerakan tanah memerlukan pengetahuan yang baik tentang karakteristik curah hujan yang dapat mempengaruhi kerentanan suatu daerah perbukitan terhadap gerakan tanah. Daerah perbukitan di Kecamatan Cililin di Kabupaten Bandung Barat merupakan salah satu wilayah yang sering mengalami bencana gerakan tanah pada waktu hujan lebat. Makalah ini menyajikan hasil pemodelan kestabilan lereng regional menggunakan Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) untuk mengkaji pengaruh karakteristik curah hujan terhadap tingkat kerentanan gerakan tanah di wilayah Kecamatan Cililin. Hasil pemodelan memperlihatkan lokasi-lokasi gerakan tanah pada umumnya terletak pada zona kerentanan gerakan tanah tinggi. Selain itu, luas zona kerentanan sangat tinggi dapat meningkat dua kali akibat kenaikan intensitas hujan. Pemodelan juga mengindikasikan bahwa zona kerentanan gerakan tanah dikontrol oleh faktor topografi dan geologi. Zona kerentanan gerakan tanah sangat tinggi cenderung terjadi pada wilayah dengan kondisi kemiringan terjal dan tersusun oleh satuan batuan vulkanik berumur Miosen Akhir yang mempunyai nilai kuat geser yang rendah. Sedangkan zona kerentanan rendah terasosiasi dengan wilayah lereng landai yang tersusun oleh satuan tufa batuapung dan batupasir tufan berumur Miosen Tengah yang mempunyai nilai kuat geser yang tinggi.

Efforts to reduce the risk of a landslide require a good knowledge of the characteristics of rainfall on the susceptibility of a hilly area to landslides. The hilly area of Cililin Subdistrict in West Bandung Regency is one of the areas that often experience landslide disasters during heavy rainfalls. This paper presents the regional slope stability modeling using Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) to assess the effect of rainfall on the landslide susceptibility in Cililin Subdistrict. Results of modeling show that the locations of previous landslide incidents are generally located in the very high susceptibility zone. Besides, the areas of very high landslide susceptibility can increase twice due to the increase of rainfall intensity. The modeling also indicates that the landslide susceptibility of the area is mainly controlled by the topographical and geological factors. The high landslide susceptible zone is most likely to occur in the steep hilly areas made up of soils with low shear strength values which were originated from the Upper Miocene volcanic rocks. Whereas very gentle slope areas are made up of high shear strength soil originated from the Middle Miocene (pumice tuff and tuffaceous sandstone) that belongs to the low landslide susceptibility zone.


Keywords


landslide, modelling, rainfall, susceptibility, TRIGRS

References


Baum, R. L ., Savage, W. Z., dan Dodt, J. W., 2002. TRIGRS-A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. U.S. Geological Survey Open-File Report 02-0424, 27 pp.

BNPB, 2018. Data Informasi Bencana Indonesia (DIBI), http://dibi/bnpd.go.id/DesInventar/ simple_data.jsp. Diunduh pada tanggal 10 Mei 2018.

Chen, C. Y., Chen, T. C., Yu, F. C., and Lin, S. C., 2005. Analysis of time-varying rainfall infiltration induced landslide, Engineering Geology, 48, 466–479.

Cruden, D. M., Varnes, D. J., 1996, Landslide types and processes, Special Report, Transportation Research Board, National Academy of Sciences, 247, 36-75.

Dietrich, W. E., Wilson, C. J., Montgomery, D. R., and McKean, J., 1993. Analysis of erosion thresholds, channel networks and landscape morphology using a digital terrain model, Journal of Geology, 101, 259–178.

Dietrich, W. E., Reiss, R., Hsu, M. L., and Montgomery, D. R.,1995. A Process-based model for colluvium soil depth and shallow landsliding using digital elevation data, Hydrological Process, 9, 383–400.

Godt, J. W., Baum, R. B., Savage, W. Z., Salciarini, D., Schulz, W. H., and Harp, E. L., 2008. Transient deterministic shallow landslide modelling: Requirements for susceptibility and hazard assessments in a GIS framework, Engineering Geology, 102, 214–226.

Iverson, R.M., 2000. Landslide triggering by rain infiltration. Water Resources Research, 36, 1897-1910.

Kim, D., Im, S., Lee, S. H., Hong, Y., and Cha, K. S., 2010. Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model, Journal of Mountain. Sciences, 7(1), 83–91.

Koesmono, M., Kusnama, Suwarna, N., 1996. Peta Geologi lembar Sindangbarang dan Bandarwaru Jawa Barat Skala 1:100.000. Direktorat Geologi, Bandung.

Montgomery, D. R. and Dietrich, W. E., 1994. A physically based model for the topographic control on shallow landsliding, Water Resources Research, 30, 1153–1171.

Montgomery, D. R., Sullivan, K., and Greenberg, H. M., 1998. Regional test of a model for shallow landsliding, Hydrological Process, 12, 943–955.

Pack, R. T., Tarboton, D. G., and Goodwin, C. N., 1998. Terrain stability mapping with SINMAP, Technical description and users guide for version 1.00, Report and software available at http://www. engineering.usu.edu/dtarb/ (last access: 15 June 2007).

Pack, R. T., Tarboton, D. G., and Goodwin, C. N., 2001. Assessing terrain stability in a GIS using SINMAP, in the 15th annual GIS conference, GIS 2001, Vancouver, 56–68, 19–22 February 2001.

Pusat Vulkanologi dan Mitigasi Bencana Geologi, 2011. Peta kerentanan gerakan tanah Kabupaten Bandung Barat, Badan Geologi, Kementrian Energi dan Sumber Daya Mineral.

Sarah, D., Sugianti, K., Lestiana, H., 2015. Regional slope stability assessment of Tawangmangu District, Central Java, Proceeding of International Conference on Landslide and Slope Stability, N3-1 - N35, Bali, Indonesia.

Salciarini, D., Godt, J. W., Savage, W. Z., Conversini, P., Baum, R. L., and Michael, J. A., 2006. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy, Landslides, 3, 181–194.

Silitonga, P. H., 1973. Peta Geologi lembar Bandung Skala 1;100.000. Direktorat Geologi, Bandung.

Sudjatmiko, 1972. Peta Geologi lembar Cianjur 1;100.000. Direktorat Geologi, Bandung.

Sugianti, K., Sukrisyanti, Tohari, A., 2016. Model kerentanan gerakan tanah wilayah Kabupaten Sukabumi secara spasial dan temporal. Riset Geologi dan Pertambangan 26(2), 117 - 129.

Tohari, A., Sarah, D., Sumardi, E., T. 2005., Studi pengaruh curah hujan terhadap gerakan tanah di Sumedang, Jawa Barat. Laporan Penelitian Puslit Geoteknologi-LIPI: Bandung.

Ward, T. S., 1978. Factor safety approach to landslide potential delineation. Ph.D Dissertation. Department of Civil Engineering, Colarado State University, Fort Collins, Colorado.

Vieira, B. C., Fernandes, N. F., and Filho, O. A., 2010. Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil, Nat. Hazards Earth Syst. Sci., 10, 1829–1837, DOI:10.5194/nhess-101829-2010.




DOI: http://dx.doi.org/10.14203/risetgeotam2018.v28.969

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Erizky Ade Kurniawan, Adrin Tohari, Indra Permanajati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: