EVALUASI POTENSI LIKUIFAKSI DI WILAYAH CEKUNGAN BANDUNG BERDASARKAN METODE ANALISIS MULTI-SENSOR GELOMBANG PERMUKAAN

Nur Amalia Dewi, Adrin Tohari, Imamal Muttaqien

Abstract


Secara geologi, wilayah Cekungan Bandung tersusun oleh endapan danau Bandung purba yang terdiri atas lapisan lempung dengan sisipan lapisan pasir sehingga rentan terhadap likuifaksi akibat gempa bumi. Metode analisis multi-sensor gelombang permukaan (MASW) adalah salah satu metode geofisika yang menghasilkan model satu dimensi kecepatan gelombang geser (Vs) terhadap kedalaman. Makalah ini menyajikan hasil analisis potensi likuifaksi menggunakan data profil Vs di 5 lokasi yang tersebar di wilayah Cekungan Bandung. Data Vs diperoleh dengan menggunakan 24 geophone yang tersebar dengan spasi 4 meter di setiap lokasi penelitian. Hasil analisis data menggunakan metode MASW menghasilkan profil Vs dan Vs30 di setiap lokasi yang menunjukkan bahwa lapisan tanah di wilayah Cekungan Bandung dapat diklasifikasi dalam kelas situs E dan D. Sedangkan berdasarkan hasil analisis potensi likuifaksi menggunakan profil Vs, dengan mempertimbangkan percepatan tanah puncak yang dihasilkan oleh Sesar Lembang (Mw 6,5), mengindikasikan bahwa lapisan pasir di dalam endapan danau purba mempunyai potensi likuifaksi pada kedalaman dan ketebalan yang bervariasi. Lapisan pasir dengan nilai Vs < 175 m/detik yang menyebabkan potensi likuifaksi di daerah Bojongemas lebih tinggi dibandingkan dengan daerah lainnya. Hasil penelitian ini menunjukkan kesesuaian dengan hasil analisis likuifaksi berdasarkan metode uji penetrasi standar dari hasil penelitian terdahulu.

 

ABSTRACT - The Evaluation of Liquefaction Potential in Bandung Basin Area Based on Multi-sensor Analysis of Surface Wave. The Bandung Basin region is composed of ancient Bandung lake sediment deposits consisting of thick clay layers intercalated with sand layers, which is vulnerable to liquefaction due to earthquakes. The multi-sensor surface wave (MASW) analysis method is a geophysical method that produces a one-dimensional model of shear wave velocity (Vs) against depth. . This paper presents the results of an analysis of the potential for liquefaction using Vs profile data at 5 locations spread across the Bandung Basin. using 24 geophones with 4-m spacing. The results of data analysis using the MASW method produce Vs and Vs30 profiles at each location which indicate that the soil layers in the Bandung Basin area can be classified into E and D site classes. Meanwhile, based on the results of the analysis of potential liquefaction using the Vs profile, taking into account the peak soil acceleration produced by the Lembang Fault (Mw 6.5), indicates that the sand layer in ancient lake sediment deposits has the potential for liquefaction at varying depths and thicknesses. Sand layer with a value of Vs <175 m / sec which causes the potential for liquefaction in the Bojongemas area is higher than in the other areas. The results of this study confirm liquefaction analysis based on the standard penetration test method from the previous study



Keywords


surface wave, site class, shear wave velocity, liquefaction, MASW

References


Ambarwati, I.W., Feranie, S., Tohari, A., 2020. Analisis potensi likuifaksi di wilayah Cekungan Bandung dengan menggunakan metode uji penetrasi konus. Ris.Geo.Tam. 30 (1), 21-37. DOI: 10.14203/risetgeotam2020.v30.1038.

Andrus, R.D., Stokoe, K.H., 1997. Liquefaction resistance based on shear wave velocity. Technical Report NCEER-97- 0022. In: Youd, T. L. and Idriss, I. M. (eds.), NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Salt Lake City, Utah, 89–128.

Andrus, R.D., Stokoe, K.H., 2000. Liquefaction resistance of soils shear-wave velocity. J. Geotech. Geoenvironmental Eng. 126. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015).

Boore, D.M., Joyner, W.B., Fumal, T.E., Survey, U.S.G., Park, M., 1997. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work 68.

Boore, D., Atkinson, G., 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra 24, 99–138.

BSN, 2012. SNI 1726:2012. Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung. Badan Standarisasi Nasional, 138 hal.

Campbell, K.W., Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD, and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra 24, 139–171.

Chiou, B., Youngs, R., 2008. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 24, 173–216.

Dam, M.A.C., Suparan, P., Nossin, J.J., Voskuil R.P.G.A., 1996. A chronology for geomorphological developments in the greater Bandung area, West-Java, Indonesia. Journal of Southeast Asian Earth Sciences 14(1-2), 101-115.

Daryono, M.R., Natawidjaja, D.H., Sapiie, B., Cummins, P., 2019. Tectonophysics earthquake geology of the Lembang Fault , West Java , Indonesia. Tectonophysics 751, 180–191. https://doi.org/10.1016/j.tecto. 2018.12.014.

Darvasi, Y., Agnon, A., 2019. Calibrating a new attenuation curve for the Dead Sea region using surface wave dispersion surveys in sites damaged by the 1927 Jericho earthquake. Solid Earth 10, 379–390. https://doi.org/10.5194/se-10-379-2019.

Erken, A., Şengül Nomaler, G., Gündüz, Z., 2018. The development of attenuation relationship for Northwest Anatolia region. Arab J Geosci. 11, 21. https://doi.org/10.1007 /s12517-017-3359-4.

Febriana, R.P., Feranie, S., Tohari, A., 2020. Analisis potensi likuefaksi di daerah Cekungan Bandung berdasarkan data standard penetration test (SPT). Jurnal Lingkungan dan Bencana Geologi 11 (1), 25-39.

Giocoli, A., Quadrio, B., Bellanova, J., Lapenna, V., Piscitelli, S., 2014. Electrical resistivity tomography for studying liquefaction induced by the May 2012 Emilia-Romagna earthquake (Mw=6.1, northern Italy). Nat. Hazards Earth Syst. Sci. 14, 731–737. https://doi.org/10.5194/nhess-14-731-2014.

Grandis, H., 2009. Pengantar pemodelan inversi Geofisika. Himpunan Ahli Geofisika Indonesia (HAGI), Bandung, Indonesia.

Handayani, L., Mulyadi, D., Wardhana, D.D., Nur, W.H., 2009. Percepatan pergerakan tanah maksimum daerah Cekungan Bandung: Studi kasus gempa Sesar Lembang. J. Sumber Daya Geol. 19, 333–337.

Harnandi, D., Iskandar, N., Nuzulliyantoro, A.T., 2000. Pengelolaan air tanah Cekungan Bandung. Buletin Geologi Tata Lingkungan, 1-6.

Hayashi, K., 2003. Data acquisition and analysis of active and passive surface wave methods. OYO Corporation.

Hutasoit, L., 2009. Kondisi Permukaan Air Tanah dengan dan tanpa peresapan buatan di daerah Bandung: Hasil simulasi numerik. Jurnal Geologi Indonesia, 4(3), 177-188. https://doi.org/10.1704/ijog.vol4no3.20093.

Idriss, I.M., Boulanger, R.W., 2008. Soil liquefaction during earthquake, Monograph. ed. EERI Publication, Earthquake Engineering Research Institute, Oakland.

Kementerian PUPR, 2017. Peta sumber dan bahaya gempa Indonesia tahun 2017. Disusun oleh Pusat Studi Gempa Nasional, Pusat Litbang Perumahan dan Permukiman, 376 hal.

Lu, Z., Wilson, G.V., 2017. Imaging a soil Fragipan using a high-frequency multi-channel analysis of surface wave method. J. Appl. Geophys. https://doi.org/10.1016/ j.jappgeo.2017.05.011.

Olafsdottir, E.A., 2014. Multichannel analysis of surface waves methods for dispersion analysis of surface wave data. University of Iceland, Reykjavik, Iceland.

Pegah, E., Liu, H., 2016. Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: a case study. Eng. Geol. 208, 100–113. https://doi.org/10.1016/j.enggeo.2016.04.021.

Robertson, P. K., Woeller, D. J., and Finn, W. D. L., 1992. Seismic Cone Penetration Test for evaluating liquefaction potential under cyclic loading. Can. Geotech. J. 29 (4), 686–695.

Sa’adah, U., Purwana, Y.M., Djarwanti, N., 2015. Analisis risiko gempa di Kota Surakarta. Matriks Teknik Sipil 3 (1), 30-35. https://doi.org/10.20961/mateksi.v3i1.

Seed, H.B., Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. Div. ASCE, 1249–1273.

Shearer, M., 2009. Introduction to seismology. Cambridge University Press, New York, USA.

Sucuoğlu, H., Akkar, S., 2014. Basic earthquake engineering: from seismology to analysis and design. Springer International Publishing.

Silitonga, P.H., 1973. Peta Geologi Lembar Bandung, Jawa Barat, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Sudjatmiko, 2003. Peta Geologi Lembar Bandung, Jawa, skala 1:100.000. Direktorat Geologi, Bandung.

Sulaeman, C., Hidayati, S., 2011. Gempa bumi Bandung 22 Juli 2011. J. Lingkungan dan Bencana 2, 185–190.

Sykora, D. W., 1987. Creation of a database of seismic shear wave velocities for correlation analysis. Geotechnical Laboratory Miscellaneous Paper GL-87-26, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Towhata, I., 2008. Geotechnical earthquake engineering. Springer International Publishing, Tokyo. https://doi.org/10.1007/ 978-3-540-35783-4

Villaverde, R., 2009. Fundamental concepts of earthquake engineering, CRC Press in 2004. CRC Press in 2004, California, USA. https://doi.org/10.1201/9781439883112

Youd, T.L., Tinsley, J.C., Perkins, D.M., J., K.E., Preston, R.F., 1979. Liquefaction potential map of San Fernando Valley, California. Progress on seismic zonation in the San Francisco Bay Region. USGS Circular, 807.




DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1131

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 RISET Geologi dan Pertambangan

Copyright of Journal RISET Geologi dan  Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

  

Indexed by:

     

 

Plagiarism checker: