KINETICS STUDY OF LEACHING ORE NICKEL LATERITE USING HYDROCHLORIC ACID IN ATMOSPHERE PRESSURE

Wahab Wahab, Deniyatno Deniyatno, Marthines Saranga, Yayat Iman Supriyatna

Abstract


Leaching of nickel laterite ore at atmospheric pressure is a leaching method that can be operated at >100⁰C temperatures in an atmospheric pressure, which is applicable to a low-grade laterite ore. This research aimed to study the effect of temperature, acid concentration, and leaching time on nickel extraction percentage and the leaching kinetics. Hydrochloric acid (HCl) was used as a leaching agent and several variables were applied, i.e., temperature (80⁰C, 90⁰C, 100⁰C), HCL concentration (5 M, 6 M, 7 M), and leaching duration (120 minutes, 150 minutes, 180 minutes) to investigate their effect on nickel extraction percentage. In addition, the kinetics of the leaching process was studied using a Shrinking Core Model. The results showed that the percentage of nickel extraction increased with increasing temperature, HCl concentration, and leaching time. The lowest percentage of nickel extraction of 51.29% was obtained when 80⁰C, five molar HCl, and 120 minutes leaching duration were applied. In contrast, The highest percentage of nickel extraction of 97.22% was obtained at 100⁰C, seven molar HCl, and 180 minutes of leaching time. The kinetics study results show that diffusion through the unreacted solid product layer controls the nickel leaching rate.


Keywords


leaching, nickel laterite ore, kinetics, shrinking core model

Full Text:

PDF

References


Astuti, W., Hirajima, T., Sasaki, K., & Okibe, N., 2015. Kinetics of nickel extraction from Indonesian saprolitic ore by citric acid leaching under atmospheric pressure. Minerals and Metallurgical Processing, 32(3), 176–185. https://doi.org/10.1007/bf03402286

Astuti, W., Hirajima, T., Sasaki, K., & Okibe, N., 2016. Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Minerals Engineering, 85, 1–16. https://doi.org/10.1016/j.mineng.2015.10.001

Hosseini, S.A., Raygan, S., Rezaei, A., & Jafari, A., 2017. Leaching of nickel from a secondary source by sulfuric acid. Journal of Environmental Chemical Engineering, 5(4), 3922–3929. https://doi.org/10.1016/j.jece.2017.07.059

Kursunoglu, S., Ichlas, Z.T., & Kaya, M., 2018. Dissolution of lateritic nickel ore using ascorbic acid as synergistic reagent in sulphuric acid solution. Transactions of Nonferrous Metals Society of China (English Edition), 28(8), 1652–1659. https://doi.org/10.1016/S1003-6326(18)64808-3

Kursunoglu, S., & Kaya, M., 2016. Atmospheric pressure acid leaching of Caldag lateritic nickel ore. International Journal of Mineral Processing, 150, 1–8. https://doi.org/10.1016/j.minpro.2016.03.001

Li, J., Li, D., Xu, Z., Liao, C., Liu, Y., & Zhong, B., 2018. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution. Journal of Cleaner Production, 179, 24–30. https://doi.org/10.1016/j.jclepro.2018.01.085

Li, J., Xu, Z., Wang, R., Gao, Y., & Yang, Y., 2019. Study on leaching kinetics of laterite ore using hydrochloric acid. Physicochemical Problems of Mineral Processing, 55(3), 711–720. https://doi.org/10.5277/ppmp18189

Li, J., Yang, Y., Wen, Y., Liu, W., Chu, Y., Wang, R., & Xu, Z., 2020. Leaching kinetics and mechanism of laterite with NH4 Cl-HCl solution. Minerals, 10(9), 1–11. https://doi.org/10.3390/min10090754

Liu, Y., & Lee, M., 2015. Separation of Co and Ni from a chloride leach solutions of laterite ore by solvent extraction with extractant mixtures. Journal of Industrial and Engineering Chemistry, 28, 322–327. https://doi.org/10.1016/j.jiec.2015.03.010

Luo, M.J., Liu, C.L., Xue, J., Li, P., & Yu, J.G., 2017. Leaching kinetics and mechanism of alunite from alunite tailings in highly concentrated KOH solution. Hydrometallurgy, 174, 10–20. https://doi.org/10.1016/j.hydromet.2017.09.008

Ma, B., Yang, W., Xing, P., Wang, C., Chen, Y., & Lv, D., 2017. Pilot-scale plant study on solid-state metalized reduction–magnetic separation for magnesium-rich nickel oxide ores. International Journal of Mineral Processing, 169, 99–105. https://doi.org/10.1016/j.minpro.2017.11.002

MacCarthy, J., Nosrati, A., Skinner, W., & Addai-Mensah, J., 2016. Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low-grade saprolitic nickel laterite ore. Hydrometallurgy, 160, 26–37. https://doi.org/10.1016/j.hydromet.2015.11.004

Miettinen, V., Mäkinen, J., Kolehmainen, E., Kravtsov, T., & Rintala, L., 2019. Iron control in atmospheric acid laterite leaching. Minerals, 9(7), 1–13. https://doi.org/10.3390/min9070404

Mohammadreza, F., Mohammad, N., & Ziaeddin, S.S., 2014. Nickel extraction from low-grade laterite by agitation leaching at atmospheric pressure. International Journal of Mining Science and Technology, 24(4), 543–548. https://doi.org/10.1016/j.ijmst.2014.05.019

Mubarok, M.Z., & Fathoni, M.W., 2016. Studi Kinetika Pelindian Bijih Nikel Limonit Dari Pulau Halmahera Dalam Larutan Asam Nitrat. Metalurgi, 31(1), 1–10. http://ejurnalmaterialmetalurgi.com/index.php/metalurgi/article/view/103

Mubarok, M.Z. & Yunita, F.E., 2015. Solvent Extraction of Nickel and Cobalt from Ammonia-Ammonium Carbonate Solution by Using LIX 84-ICNS. International Journal of Nonferrous Metallurgy, 04(03), 15–27. https://doi.org/10.4236/ijnm.2015.43003

Mystrioti, C., Papassiopi, N., Xenidis, A., & Komnitsas, K., 2018. Counter-current leaching of low-grade laterites with hydrochloric acid and proposed purification options of pregnant solution. Minerals, 8(12), 1–21. https://doi.org/10.3390/min8120599

Önal, M.A.R. & Topkaya, Y.A., 2014. Pressure acid leaching of Çaldaǧ lateritic nickel ore: An alternative to heap leaching. Hydrometallurgy, 142, 98–107. https://doi.org/10.1016/j.hydromet.2013.11.011

Permana, D., Kumalasari, R., Wahab, & Musnajam., 2020. Pelindian Bijih Nikel Laterit Kadar Rendah Menggunakan Metode Atmospheric Acid Leaching dalam Media Asam Klorida (HCl). Riset Geologi Dan Pertambangan, 30(2), 203–214. https://doi.org/10.14203/risetgeotam2020.v30.1097

Rice, N.M., 2016. A hydrochloric acid process for nickeliferous laterites. Minerals Engineering, 88, 28–52. https://doi.org/10.1016/j.mineng.2015.09.017

Safitri, N., Mubarok, M.Z., Winarko, R., & Tanlega, Z., 2018. Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization. AIP Conference Proceedings, 1964, 1–10. https://doi.org/10.1063/1.5038312

Stopic, S. & Friedrich, B., 2016. Hydrometallurgical processing of nickel lateritic ores. Vojnotehnicki Glasnik, 64(4), 1033–1047. https://doi.org/10.5937/vojtehg64-10592

Sudibyo, S., Junaedi, A., Amin, M., Sumardi, S., Nurjaman, F., Aji, B.B., Supriyatna, Y.I., & Hermida, L., 2018. Solvent Extraction Process for the Recovery Cobalt and Nickel From Low-Grade Laterite Using Batch Recycle System. Widyariset, 4(2), 189–196. https://doi.org/10.14203/widyariset.4.2.2018.189-196

Thubakgale, C.K., Mbaya, R.K.K., & Kabongo, K., 2013. A study of atmospheric acid leaching of a South African nickel laterite. Minerals Engineering, 54, 79–81. https://doi.org/10.1016/j.mineng.2013.04.006

Top, S., Kursunoglu, S., & Ichlas, Z.T., 2020. Effects of leaching parameters on the dissolution of nickel, cobalt, manganese, and iron from Caldag lateritic nickel ore in hydrochloric acid solution. Canadian Metallurgical Quarterly, 59(3), 368–376. https://doi.org/10.1080/00084433.2020.1780560

Wang, B., Guo, Q., Wei, G., Zhang, P., Qu, J., & Qi, T., 2012. Characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia. Hydrometallurgy, 129–130, 7–13. https://doi.org/10.1016/j.hydromet.2012.06.017

Wang, K., Li, J., McDonald, R.G., & Browner, R.E., 2018. Iron, aluminium, and chromium co-removal from atmospheric nickel laterite leach solutions. Minerals Engineering, 116(July), 35–45. https://doi.org/10.1016/j.mineng.2017.10.019

Wang, X., Sun, T., Chen, C., & Hu, T., 2017. Current Studies of Treating Processes for Nickel Laterite Ores. Proceedings of the 2nd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2017), Series: Advances in Computer Science Research, Volume 70, 139–152. https://doi.org/10.2991/icmeit-17.2017.27

Wanta, K.C., Tanujaya, F.H., Susanti, R.F., Petrus, H.T.B.M., Perdana, I., & Astuti, W., 2018. Studi Kinetika Proses Atmospheric Pressure Acid Leaching Bijih Laterit Limonit Menggunakan Larutan Asam Nitrat Konsentrasi Rendah. Jurnal Rekayasa Proses, 12(2), 77–84. https://doi.org/10.22146/jrekpros.35644

Xiao, W., Liu, X., & Zhao, Z., 2020. Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure. Hydrometallurgy, 194, 1–27. https://doi.org/10.1016/j.hydromet.2020.105353




DOI: http://dx.doi.org/10.14203/risetgeotam2022.v32.1163

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Wahab Wahab, Deniyatno Deniyatno, Marthines Saranga, Yayat Iman Supriyatna

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: