Sri Yudawati Cahyarini, Suharsono Suharsono


Deposition of calcium carbonat (CaCO3) in coral skeleton is known as calcification. The calcification rate is the product of the linear extension rate and the average density at which skeleton was deposited in making that extension. Calcification rate is influenced by the ambient water condition e.g sea surface temperature. To understand the influence of SST to the coral growth, it is required long time series data of both SST and coral growth i.e coral calcification from present time till back tens to hundreds years ago. The aim of this study is to determine the influence of historical SST to coral calcification of Porites coral from Biak waters.  In this study, computer tomography approach is used to analyzed coral calcification. Osirix software is used to analyze the coral image data which is resulted from the computed tomography scanning (CT-Scan). Four coral cores from Biak waters were analyzed for their calcification rate. The results shows that the averaged of calcification rate of four cores increases, which is coincided with increasing of Biak SST during period of 1905-2011.



Kemampuan koral mengendapkan kalsium karbonat (CaCO3) dikenal sebagai kalsifikasi. Kecepatan kalsifikasi  merupakan perkalian densitas dan pertumbuhan linear koral tersebut. Kecepatan kalsifikasi koral dipengaruhi oleh kondisi perairan terumbu karang salah satunya adalah suhu permukaan laut (SPL). Untuk memahami bagaimana pengaruh SPL terhadap kalsifikasi koral diperlukan data historis (data urut-urutan waktu) SPL dan kalsifikasi koral dari masa kini sampai masa lalu. Tujuan utama dari studi ini adalah untuk mengetahui sejarah pengaruh SPL terhadap pertumbuhan koral yaitu kalsifikasi dari koral Porites perairan Biak. Dalam studi ini dihitung kecepatan kalsifikasi dengan menggunakan pendekatan tomografi koral dengan menggunakan perangkat lunak Osirix. Hasil scanning computer tomografi (CT-Scan) koral merupakan data inputing Osirix. Empat contoh koral dari perairan Biak dilakukan analisis kecepatan kalsifikasi.  Hasil rata-rata kecepatan kalsifikasi dari ke empat contoh koral Porites Biak menunjukkan kenaikan kecepatan kalsifikasi koral yang selaras dengan kenaikan SPL selama periode 1905-2011.



calcification rate, sea surface temperature, coral, Porites

Full Text:



Aldrian, E., and R. D Susanto, 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23, 1435-1452.

Brown, B. E. and Suharsono, 1990. Damage and recovery of coral reefs affected by El Niño related seawater warming in the Thousand Islands, Indonesia. Coral Reef. DOI:10.1007/BF00265007.

Cantin, N.E, A. L. Cohen, K. B. Karnauskas, A. M. Tarrant, D. C. McCorkle, 2010. Ocean Warming Slows Coral Growth in the Central Red Sea. Science, 239, 322-325. DOI:10.1126/science.1190182.

Cantin, N.E & J.M. Lough, 2014. Surviving Coral Bleaching Events: Porites Growth Anomalies on the Great Barrier Reef. PLoS ONE, 9(2): e88720. DOI:10.1371/journal.pone.0088720.

Cahyarini S.Y. and J. Zinke, 2010. Geochemical tracer in coral as a sea surface temperature proxy: records from Jukung coral. ITB Journal, 42B (1). DOI:10.5614/itbj.eng.sci.2010.42.1.5

Cahyarini S.Y. 2008. Annual growth band analysis of Porites corals from Seribu Islands corals, Indonesia and its correlation with Precipitation. Jurnal Riset Geologi dan Pertambangan, 18 (2), 51-59.

Casey, K.S., T.B. Brandon, P. Cornillon, and R. Evans, 2010. The Past, Present and Future of the AVHRR Pathfinder SST Program. In V. Barale, J.F.R. Gower, and L. Alberotanza (eds), Oceanography from Space: Revisited. Springer. DOI:10.1007/978-90-481-8681-5_16.

De’ath G., J. M. Lough, K. E. Fabricius, 2009. Declining Coral Calcificationon the Great Barrier Reef. Science , 323, 116-119.

Felis, T and J. Pätzold, 2004. Climate Reconstructions from Annually Banded Corals. In M. Shiyomi et al. (eds), Global Environmental Change in the Ocean and on Land. Terrapub, Tokyo. pp. 205–227.

Juillet-Leclerc, A. and G. Schmidt, 2001. A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites, Geophysical Research Letters, 28 (21), 4135-4138.

Lough, J.M., and Barnes, D.J. 1997. Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. J. Exp. Mar. Biol. Ecol, 211, 29–67.

Reynolds, R. W. and T. M. Smith, 1994. Improved global sea surface temperature analyses. Journal of Climate, 7, 929-948.

Saenger, C., A. L. Cohen, D.W. Oppo, R. B. Halley and J. E. Carilli, 2009. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nature Geoscience. DOI:10.1038/NGEO552.

Suharsono & S. Y. Cahyarini, 2012. Reduced trends of annual growth of Indonesian Porites over ~20 years. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012.

Suharsono, 1998. Condition of coral reef resource in Indonesia. Jurnal Pesisir dan Lautan, 1(2), 44-52.

Smith, T.M., R.W. Reynolds, Thomas C. Peterson, and Jay Lawrimore, 2008. Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). Journal of Climate, 21, 2283-2296.

Tanzil, J.T.I., B.E. Brown, A.W.Tudhope, R.P.Dunne, 2009. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984-2005, Coral Reef. DOI.10.1007/s00338-008-0457-5.

Basis data KNMI



  • There are currently no refbacks.

Copyright (c) 2014 Sri Yudawati Cahyarini, Suharsono Suharsono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS


Indexed by:



Plagiarism checker: