Time Defendability of Ground Resistance Properties and Its Application of Vitric Tuff on the Development of Ground Enhancement Material

Jakah Jakah, Dicky Muslim, Anggoro Tri Mursito, Zufialdi Zakaria, Heri Nurohman


Ground repair material is an essential part of the grounding system as a lightning rod to reduce the risk of lightning activity. Grounding repair materials consist of conductive and superconductive materials, commonly known as Ground Enhancement Materials (GEM). GEM has a low resistivity, very effectively supporting lightning shock energy to earth. Vitric tuff, a pyroclastic rock, is composed of an aluminosilicate (phyllosilicate) mineral group developed as a grounding improvement material. The primary purpose of this study was to determine the decrease in resistivity of vitric tuff in its development as a GEM. The research method consisted of field observations and laboratory experiments (treatment with chemical-physical activation and formulation with additives). The results showed that moisture content, SiO2/Al2O3 ratio (quartz and feldspar mineral/albite), clay mineral, crystal quality (impurities), carbon, and salt were influenced by vitric tuff resistivity. With the vitric tuff formulation and additives, the resistivity reduction is above 99%. Based on experiments, the best formulation of GEM made from tuff is 65% activated vitric tuff, 27% activated charcoal, 6% NaCl, and 2% Cement Material Cellulose. The formula produces a resistivity value of 0.0124 Ω-m, which is stable with time and meets GEM requirements (ρ ≤ 0.20 Ω-m).


backfill material, grounding system, increased value-added, lightning protection, soil resistivity

Full Text:



Ackley, M.W., Rege, S.U., Saxena, H., 2003. Application of natural zeolites in the purification and separation of gases. J. Microporous Mesoporous Mater. 61, 25–42. https://doi.org/10.1016/S1387-1811(03)00353-6

Agustinus, E.T.S., 2018. Multi Blending Technology (MBT): mineral processing method for increasing added value of marginal reserve. IOP Conf. Ser. Earth Environment Science 118. doi :10.1088/1755-


Agustinus, E.T.S., Sembiring, H., Listiyowati, L.N., 2010. Prototip Ground Enhancement Material (GEM) Berbahan Baku Na-Bentonit Karangnunggal - Tasikmalaya Sebagai Bahan Substitusi GEM Impor. Riset Geoloogi dan Pertambangan vol. 20 (2), 81–93.

Ahmad, R., Ali, S., Albalasie, A., Jamal, A., 2020. Simulation and breakdown characteristics of china clay and silica sand for improved grounding system. Commun. Comput. Eng. Int. Conf. Electr. DOI: 10.1109/ICECCE49384.2020.9179377.

Ahmad, W., Rahman, A., Jasni, M.Z.A., Kadir, A., Hizam, 2010. Chemical Enhancement Materials for Grounding Purpose. 30th International Conference on Lightning Protection - ICLP

Andini, D., Martin, Y., Gusmedi, H., 2016. Perbaikan Tahanan Pentanahan dengan Menggunakan Bentonit Teraktivasi. J. Electrian 10, 45–53.

Asrina, N., Ramlee, B., 2018. Characteristics of Positive Lightning As Observed In Temperate and Tropic Regions : A Review. Int. Conf. Electr. Eng. Informatics (ICon 159-164. DOI: 10.1109/ICon-EEI.2018.8784317.

Azmi, A., Ahmad, N.A., Yiew, L.K., Abdul-Malek, Z., 2019. The use of enhancement material in grounding system: A review. Indones. J. Electr. Eng. Comput. Sci. 13, 453–460. https://doi.org/10.11591/ijeecs.v13.i2.pp453-460

Badan Standardisasi Nasional, 2000. SNI 04-0225 Persyaratan Umum Instalasi Listrik 2000 (PUIL 2000). Badan Stand. Nasional, Jakarta.

Bakar, O.A., Arshad, S.N.M., Ariffen, A.M., Halim, Na.H., Leong, W.C., Romli, M.I.F., Hasni, N.A.S., 2020. Performance of Galvanized – Steel and Copper Grounding Electrodes Using Bentonite and Coconut Husk Ashes as an Additives Material to Grounding System Performance of Galvanized – Steel and Copper Grounding Electrodes Using Bentonite and Coconut Husk Ashes. IOP Conf. Sci. Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/864/1/012185

Erico, 2018. GEM Ground Enhancement Material, nVent 1–2.

Febianti, Y.N., 2014. Permintaan Dalam Ekonomi Mikro. Edunomic vol. 2 (1), 15–24.

Ghosh, A., Biswas, D., Hazra, P., Guha, G., De, S.S., 2019. Studies on Schumann Resonance Phenomena and Some Recent Advancements. Geomagn. Aeron. 59, 980–994. https://doi.org/10.1134/S0016793219080073

Gruszkiewicz, M.S., Simonson, J.M., Burchell, T.D., Cole, D.R., 2005. Water adsorption and desorption on microporous solids at elevated temperature. J. Therm. Anal. Calorim. 81, 609–615. https://doi.org/10.1007/s10973-005-0832-1

Hakim, M.A., Syakur, A., Nugroho, A., 2018. Analisis Pengaruh Penambahan Bentonit dan Garam NaCl untuk Mereduksi Resistansi Pentanahan dengan Variasi Kedalaman Elektroda Dan Variasi Konsentrasi. TRANSIENT 7, 1-7 ISSN: 2302-9927, 523. https://doi.org/10.14710.

Halim, N.H., Hairuddin, M.F., Arshad, S.N.M., Isa, M., Adzis, Z., Khang, A.W.Y., 2019. Analysis on Topology of Grounding System Using Bentonite and Coconut Husk as Additive Material. Univers. J. Electr. Electron. Eng. 6, 50–58. https://doi.org/10.13189/ujeee.2019.061506

Heaney, M.B., 2003. Electrical conductivity and resistivity. CRC Press LLC 7-1-7–14. https://doi.org/10.1201/9780203009406

Hidayati, R., Zainul, R., 2019. Studi Termodinamika Transpor Ionik Natrium Klorida Dalam Air dan Campuran Tertentu. INA-RXiv. doi: 10.31227/osf.io/d456p.

IEEE Standards Association, 2012. IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System (Revision of IEEE Std 81-1983). IEEE.

International Electrotechnical Commission, 2018. IEC-62561-7-2018-Lightning-protection-system-components-LPSC-Part-7-Requirements-for-earthing-enhancing-compounds.pdf.

Ismujianto, Isdawimah, Nadhiroh, N., 2019. Improvement of Electrical Grounding System Using Bentonite. J. Phys. Conf. Ser. 1364, 012063. https://doi.org/10.1088/1742-6596/1364/1/012063

Jian, M.., Huang, Z., Zhong, D., Liang, S., Liang, H., Xue, D., Chen, X., Fan, T., 2016. Formation and distribution of tuffaceous tight reservoirs in the Permian Tiaohu Formation in the Malang sag, Santanghu Basin, NW China. Petroleum Exploration and Development vol. 43 (5), 778–786.


Jozefaciuk, G., Bowanko, G., 2002. Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays Clay Miner. 50, 771-783. https://doi.org/10.1346/000986002762090308

Kurniasari, L., Djaeni, M., Purbasari, A., 2011. Aktivasi Zeolit Alam Sebagai Adsorben Pada Alat Pengering Bersuhu Rendah. Reaktor 13, 178-184. DOI: 10.14710/reaktor.13.3.178-184.

Lai, W., Ahmad, W., Jasni, J., Kadir, A., 2017. A Review on the Usage of Zeolite, Perlite and Vermiculite as Natural Enhancement Materials for Grounding System Installations. 15th Student Conference on Research and Development. IEEE. doi: 10.1109/SCORED.2017.8305368.

Lim, S.C., 2014. Bentonite-Concrete Mix for Ufer Grounding. Univ. Putra Malaysia.

Lim, S.C., Abidin Ab Kadir, M.Z., Gomes, C., Buba, S.D., 2012. Preliminary results of the performance of grounding electrodes encased in bentonite-mixed concrete. Int. Conf. on Lightning Protection (ICLP). https://doi.org/10.1109/ICLP.2012.6344296

Lim, S.C., Gomes, C., Kadir, M.Z.A.A., Nourirad, G., Malek, Z.A., 2015. Behaviour of backfill materials for electrical grounding systems under high voltage conditions. J. Eng. Sci. Technol. 10, 811-826. ISSN 1823-4690.

Lu, S., Ma, Y., Zhu, C., Shen, S., He, Q., 2009. The Effect of Hydrophobic Modification of Zeolites on CO2 Absorption Enhancement. Chinese J. Chem. Eng. 17, 36–41. https://doi.org/10.1016/S1004-9541(09)60029-X

Martin, Y., Permata, D., Despa, D., Wiyoto, Y.L., 2019. The use of physically activated and soil composed bentonite as environment friendly for grounding resistance. IOP Conf. Ser. Earth Environ. Sci. 245, 012004. https://doi.org/10.1088/1755-1315/245/1/012004

Mohd Tadza, M.Y., Tengku Anuar, T.H.H., Mat Yahaya, F., 2019. Investigation on Electrically Conductive Aggregates as Grounding Compound Produced by Marconite. Civ. Environ. Eng. Reports 29, 86–96. https://doi.org/10.2478/ceer-2019-0026

Nwachukwu, V.C., Lawal, S.A., 2018. Investigating the Production Quality of Electrical Porcelain Insulators from Local Materials. IOP Conf. Series: Materials Science and Engineering vol. 413. https://doi.


Opara, F.K., Nduka, O.S., Ilokah, N.C., Amaizu, P.C., Onyebuchi, M.A., 2014. Comparative Deterministic Analysis of Bentonite, Pig Dung and Domestic Salt and Charcoal Amalgam as Best Resistance Reducing Agent

for Electrical Earthing Applications. International Journal of Scientific & Engineering Research vol. 5 (10), 575-584.

Pratomo, I., 2006. Klasifikasi gunung api aktif Indonesia, studi kasus dari beberapa letusan gunung api dalam sejarah. Jurnal Geologi Indonesia vol. 1 (4), 209–227.

Schmid, R., 1981. Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology 9, 41–43. https://doi.org/10.1130/0091-7613(1981)9<41:DNACOP>2.0.CO;2

Sembiring, H., Agustinus, E.T.S., Dewi, M., 2010. Rekayasa Mineral Bersifat Absorban Sebagai Karakterisasi dan Interkalasi. Prosiding Pemaparan Hasil Penelitian Puslit Geoteknologi LIPI.

Shuhada, N.H., Ahmad, N.A., Adzis, Z., 2016. Grounding enhancement material using bentonite. J. Adv. Res. Mater. Sci. ISSN 24, 2289–7992.

Sugiyono, 2006. Statistik untuk Penelitian. CV Alfabeta Bandung, ISBN : 979-8433-10-6.

Supriatna, S., Sarmili, L., Sudana, D., Koswara, A., 1992. Peta Geologi Lembar Karangnunggal: Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi ESDM, Bandung.

Vaisala, 2020. Lightning Like Never Before - Annual Lightning Report 2020, Vaisala.

Verdiana, P.R.M., Yuniardi, Y., Agus Nur, A., 2014. Petrologi Dan Petrografi Satuan Breksi Vulkanik dan Satuan Tuf Formasi Jampang, Daerah Cimangu dan Sekitarnya, Jawa Barat. Bulletin of Science Contribution vol. 12 (3), 171–179.

Wan Ahmad, W.F.H., Voon, Y.J., Jasni, J., Ab-Kadir, M.Z.A., Gomes, C., 2018. Performance of Bentonite, Fly Ash and Wood Ash Mixtures as Grounding Enhancement Materials, in: IEEE International Conference on Power and Energy (PECon). IEEE, pp. 203–208. https://doi.org/10.1109/PECON.2018.8684104

Winarti, Gendoet, H., 2015. Ancient Volcanic Rocks Identification The Western Part Of Yogyakarta Southern Mountains Based On Geoelectrical Measurement. Eksplorium vol. 36 (1), 57–70.

Wiyono, Soemarno, Mariyanto, S., Rahmansyah, A., 2017. Interpretation of Natural Water (Sediments) Depth Patterns around the River Banyuputih Situbondo East Java with Method Geoelectric Resistivity Sounding. Resour. Environ. 7, 1–7. https://doi.org/10.5923/j.re.20170701.01

Zhou, M., Wang, J., Cai, L., Fan, Y., 2015. Laboratory Investigations on Factors Affecting Soil Electrical Resistivity and the Measurement. IEEE Trans. Ind. Appl. 9994. https://doi.org/10.1109/TIA.2015.2465931

DOI: http://dx.doi.org/10.14203/risetgeotam2021.v31.1149


  • There are currently no refbacks.

Copyright (c) 2021 Jakah Jakah, Dicky Muslim, Anggoro Tri Mursito, Zufialdi Zakaria, Heri Nurohman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS


Indexed by:



Plagiarism checker: